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Abstract

Handwriting identification is widely accepted as scientific evidence. However,
its authenticity is questioned because it depends on the appraiser's professional
skills and susceptibility to deliberate false identification by expert witnesses.
Consequently, there is an urgent need for an effective handwriting identifica-
tion system (HWIS) that reduces reliance on the appraiser's skills and mitigates
the risk of international false identification. Here, we report a HWIS that inte-
grates a self-powered handwriting signal data acquisition device with an
advanced deep learning architecture possessing powerful feature extraction
ability and one-class classification function. The device successfully captures
the characteristic differences in handwriting behavior between genuine writers
and forgers, and the handwriting identification results demonstrate the excel-
lent performance of our system, showcasing its powerful potential to solve the
longstanding challenge of handwriting identification that has perplexed
humans for a considerable period. Moreover, this work exhibits the system's
capability for remote access and downloading the handwriting signal data
through the data cloud, highlighting its practical value for fulfilling the
requirements of handwriting recognition and identification applications, and it
can effectively advance signature information security and ensure the protec-
tion of private information.
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1 | INTRODUCTION

Handwriting signature is one of the oldest behavioral bio-
metrics and serves as a primary means of communication
and information organization. Similar to a human finger-
print, each person's handwriting is characterized by a
unique writing style, which exhibits distinct angles and
curves. Handwriting identification involves analyzing
and comparing handwritten text, such as documents or
signatures, to determine their authenticity, authorship,
and origin in terms of time and place. This process is typ-
ically carried out by specialized examiners who adhere to
relevant legal regulations and technical standards, ensur-
ing the accuracy and reliability of their findings. The
technology and applications of handwriting identification
are extensive and encompass the recognition of handwrit-
ten numbers, English letters, Chinese characters, and
more. Handwriting-signature is proven highly effective in
identifying specific characteristics of an individual, and
its utilization is widespread across various fields, includ-
ing security,1 forensics, and criminal justice system,2
analysis of historical documents,® and classification of
ancient documents.* Advancements in technology have
drawn the attention of psychologists, graphologists,
forensic experts, and historians, to the analysis of hand-
writing, which, in some areas of expertise, holds a similar
conceptual value as fingerprint systems.”” In handwrit-
ing recognition, the conventional process begins by
converting the mechanical signals into image informa-
tion and then scanning the characters on paper as digital
images for storage and recognition.** The scanning pro-
cess relies on optical methods, and the recognition rate
greatly varies depending on factors such as the scanned
images' brightness, contrast, and distortion. The two sig-
nal conversion processes result in the loss of a substantial
amount of original handwritten information, leading to
the unreliability of handwriting recognition and authen-
tication.'® Additionally, deciphering handwritten forms
and transforming them into savable and searchable digi-
tal media can be time-consuming for record keeping. In
pursuit of efficiency, accuracy, and time-saving, mechani-
cal and digital technologies have gradually replaced tradi-
tional handwriting methods. Specialized digitizing tablets
and pressure-sensitive pens are used to capture a writer's
pen movement and dynamic features, including velocity,
pressure, and acceleration.''* Undoubtedly, these
dynamic features are unique for individual writers,

resulting in more reliable identification results compared
with the traditional methods. However, challenges that
arise from the high cost and ongoing efforts to address
specific operational requirements, limit the widespread
application of these technologies. Consequently,
obtaining a comprehensive handwriting identification
system (HWIS) that does not rely on the appraiser's pro-
fessional skills can also mitigate international false iden-
tification and remains an ongoing challenge.

In recent years, triboelectric nanogenerators
(TENGS), based on the coupling effect of contact electrifi-
cation and electrostatic induction, have attracted world-
wide attraction.”>”!” The underlying theory of TENGs is
rooted in Maxwell's equations, with nanogenerators serv-
ing as practical applications of Maxwell's displacement
current in energy and sensor technologies.'®** TENGs
offer several advantages, such as low cost, material diver-
sity, simple structure, flexibility, adaptability, and rapid
dynamic response, making TENGs an ideal choice for
self-powered sensors.”>>> Previous research has shown
that the electrical output signal of TENG is directly
influenced by external mechanical stimulation and can
be utilized for detecting pressure,’>*’ vibration,***’
velocity,* position,* and relative displacement.** Conse-
quently, TENGs were able to serve as promising devices
for capturing complex handwriting information without
the need for an additional power supply.'>'*>*>** In these
earlier works, characters were written freely by individ-
uals to record signals from the TENG-based device,
which were then processed using various signal
processing techniques and recognized through machine
learning methods.'*> Furthermore, the electrical output
performance of TENGs is directly affected by individual
writers,”®*” leading to potential instability in long-term
use in open environments for handwriting signal record-
ing, which can adversely impact recognition accuracy.
Actual cases demonstrated that fraudsters usually forge
the handwriting signature by either imitating (placing
the handwriting of the genuine writer in front of the eyes
and closely observing and copying the handwriting to
guarantee the imitated handwriting is close to the genu-
ine writer as much as possible) the genuine writer's hand-
writing or tracing (overlaying the genuine writer's
handwriting and tracing it line by line) the signature of
the genuine writer to achieve their illegal goals.*®*"
Therefore, there is a pressing need to develop an anti-
humidity handwriting signal acquisition device and
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identification system that considers the influence of real-
world open environments and practical application
scenarios.

With the rapid development of deep learning and tri-
boelectric nanogenerators in the past decade, numerous
deep learning and triboelectric nanogenerator-enabled
smart systems have been designed to achieve intelligent
recognition for complex scenarios.*’*> Given the com-
plexity of handwriting information, the utilization of
deep learning methods is necessary to accomplish hand-
writing identification and verification. In this study, we
propose a HWIS that integrates a fully packaged tribo-
electric sensors array for simultaneously capturing hand-
writing images and digital signals, a deep learning
algorithm for extracting the feature information, and a
one-class support vector machine (OC-SVM) for hand-
writing classification. In the development of triboelectric
sensors, the FEP and copper film were used as the tribo-
electric materials, PMMA as the supporting material, and
Kapton tape was used as a packaging material. All the
materials used are low-cost, commercially available, and
suitable for large-scale applications. The device fabrica-
tion process is simple and yields devices with excellent
output performance and stability. The fully packaged
contact-separation triboelectric sensor serves as the base
plate, and commercial writing paper is placed on the fully
packaged device. When a person writes characters, the
handwriting image is obtained and the dynamic writing
biometric of the person is reflected in the output signal of
the triboelectric sensor. In the meantime, the writer's
handwriting signals are recorded. Subsequently, we
employ the efficient convolutional neural network
(CNN) model, MobileNetV2, to extract the feature infor-
mation from the handwriting signal. The OC-SVM is uti-
lized as the classifier for the ultimate handwriting
classification and identification. Finally, we showcased
the physical implementation of the developed system,
demonstrating its capabilities in handwriting signal data
acquisition, wireless transmission, data uploading to the
data cloud, and allocation on multiple display terminals.
Additionally, we exhibited the system's capability for
remote access through the data cloud and downloading
of handwriting signal data, highlighting its practical
value for fulfilling the requirements of handwriting rec-
ognition and identification applications. The proposed
HWIS overcomes the reliance on the appraiser's expertise
and the potential bias of expert witnesses in the appraisal
process. Therefore, the work addresses the three primary
challenges of handwriting identification: (i) the depen-
dence on subjective experience without objective statisti-
cal support, (ii) The lack of unified and comprehensive
appraisal standards, and (iii) the need for enhanced qual-
ity and expertise of professionals. Thus, this work

presents a promising and universal solution for identify-
ing and verifying multilanguage handwriting with high
accuracy. It is effectively demonstrated through an exper-
iment validation that proposed HWISs possess the signifi-
cant potential to solve the longstanding major challenge
of handwriting identification that has puzzled customers
and researchers for an extended time. In addition, this
study proposed uploading and saving handwriting signal
data to the cloud, transforming the storage method of
handwriting information from the traditional centralized
single storage to distributed multiple storage segments,
effectively enhancing the security of penmanship
information data.

2 | RESULTS AND DISCUSSION

2.1 | Overview of the handwriting
identification

Handwriting analysis and identification play an irreplace-
able role in various fields and provide crucial support for
ensuring the authenticity of documents, maintaining
social order, and protecting individual rights. Figure 1
shows the overview of handwriting identification, which
encompasses the application scenarios of handwriting
identification, common methods used in
handwriting analysis and identification, and the proposed
handwriting identification method. Handwriting analysis
and identification are widely used in daily life, such as
being employed in the identification of the authenticity
of signatures on authorizations, contracts, legal docu-
ments, and financial documents, as shown in Figure 1A.
Due to the significant importance of handwriting identifi-
cation, considerable efforts have been devoted to this
field, and several commonly used methods for handwrit-
ing identification, including visual comparison, micro-
detection, material inspection, and machine learning-
based signature image verification, are outlined in
Figure 1B. However, current handwriting methods suffer
from subjectivity, dependency on individual expertise,
variations in technical proficiency, and the impact of
handwriting sample quality and clarity on identification
results. Here, we propose an advanced HWIS, as shown
in Figure 1C. The system incorporates a self-powered
handwriting signal acquisition device based on a tribo-
electric sensor array for capturing the handwriting sig-
nals, a deep learning method for extracting feature
information, and a one-class support vector machine
used as a classifier for identifying and verifying the hand-
writing of genuine writers and forgers. Traditionally,
individuals write characters on paper, and their hand-
writing is represented as a picture. Therefore, appraisers
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FIGURE 1 Overview of the handwriting identification. (A) Some document types may require signature recognition. (B) Several
commonly used methods for handwriting identification. (C) Schematic illustration of the HWIS enabled by the deep learning method and
the self-powered handwriting signal acquisition device based on a triboelectric sensor array. (D) Schematic illustration of the classification
process of the genuine's and forger's handwriting samples. (E) Physical diagram of the fabricated triboelectric sensor array. (F) Schematic
structure of a fully packaged triboelectric sensor cell.

often encounter difficulties when evaluating and verify-  triboelectric sensor array records writing information
ing handwriting obtained through imitating or tracing such as velocity, pressure, and pause, which are reflected
the genuine writer. In this system, a self-powered hand- in the frequency and amplitude of output signals. The

writing signal acquisition device based on a triboelectric =~ obtained handwriting signals are processed and divided
sensor array serves as a base plate, with commercial into training data and testing data. The classifier was
paper fixed on its surface. This setup enables the simulta- trained using the training data, and the testing data were
neous acquisition of handwriting images and signals. The input into the trained classifier to classify a person's
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handwriting. Figure 1D illustrates the classification pro-
cess of the genuine's and forgers' handwriting samples.
Figure 1D(I) shows the genuine handwriting samples
and the learned classification hyperplane, Figure 1D(II)
displays the distribution pattern of genuine and four dif-
ferent forgers' handwriting samples, and Figure 1D(III)
depicts the classification results of handwriting samples
that are written by the genuine and any forgers, includ-
ing the four and all these handwriting samples can only
be identified as genuine (“yes”, i.e., inside hyperplane) or
forger (“no”, i.e., outside hyperplane). Figure 1E shows
the physical diagram of the triboelectric sensor array. It
consists of four fully packaged triboelectric sensors that
are evenly distributed on the bottom plate. Figure 1F is
the schematic structure of a fully packaged triboelectric
sensor cell of the triboelectric sensor array. The electri-
fied FEP is utilized as the top triboelectric layer, and a
layer of copper (Cu) film serves as the top electrode.
A layer of copper film is employed as the bottom tribo-
electric layer, with EVA foam used as a buffer layer to
enhance the contact area and improve the electrical out-
put performance. PMMA is used as the support, and four
springs act as spacers. Finally, the triboelectric sensor is
packaged using Kapton film, providing excellent resis-
tance to humidity and dust. This ensures its adaptability
to different conditions and guarantees stable output
performance.

2.2 | Working principle and
fundamental characterization

Taking FEP as the moving part, the working principle of
the triboelectric sensor is illustrated in Figure 2A. At the
initial state, the top part and bottom part of the triboelec-
tric sensor separate state, negative triboelectric charges
are gained by the FEP due to its stronger ability to cap-
ture negative charges, whereas the top Cu electrode is left
positively charged (I). When the FEP film begins to
approach the bottom Cu triboelectric layer, the potential
difference between the two surfaces will gradually
increase, resulting in an instantaneous electron flow from
the top electrode to the bottom electrode in the external
circuit (II). This transient flow of electrons continues
until the FEP film and bottom Cu electrode are fully
contacted (III). When the FEP film begins to separate
from the bottom Cu electrode, the potential difference

between the top and bottom Cu electrodes will gradually
increase, and the electrons will be repelled back from the
bottom Cu electrode to the top Cu electrode through the
external load (IV). By repeating the contact-separate pro-
cess between the top part and the bottom part, an alter-
native electrical output will be generated. In this study,
the amplitude and frequency of the voltage reflect various
characteristics of the writers' handwriting behavior
features.

The performance of triboelectric sensors relies on
crucial parameters such as frequency, force, and contact-
separation gap. To investigate their impact on the sen-
sor's performance, systematic experiments were
conducted and the results were obtained. The electrified
FEP film (with a size of 35 x 35 mm) was used as the
moving part, driven by a linear motor to periodically con-
tact and separate with a commercial copper film (with a
size of 35 x 35 mm) was used as the bottom and tribo-
electric layer that was mounted on a three-coordinate dis-
placement plate. The frequency-dependent output
electrical signals were examined under a gap of 4 mm
and a driving force of 2 N. Figure 2B shows the open-
circuit voltage of the device at different frequencies from
0.5 to 2 Hz and the voltage maintained nearly constant
values of ~150 V. The transfer charges (Q) of the device
at different frequencies in the range from 0.5 to 2 Hz
exhibited the same trend (Figure S1A). This observation
suggests that equal triboelectric charges were generated
on the triboelectrification layer, resulting in the same
amount of static charges on both electrodes. Conse-
quently, the transfer charges and potential difference
between the electrodes remained constant. However, the
peak-to-peak value of short-circuit current (I.) increased
from 2.5 to 7 pA with the increase in frequency indicating
an elevated rate of electron transfer (Figure S1B). The
output electrical signals under different driving forces
were carried out under a frequency of 2 Hz and a gap of
4 mm. Figure 2C illustrates the open-circuit voltage sig-
nal of the device as the driving force gradually increases
from 1 to 4 N. It can be observed that with the increase
in driving force, the open-circuit voltage shows a progres-
sively increasing trend. The short-circuit current and
transfer charges (Q) exhibit the same trend with the driv-
ing force increase from 1 to 4 N (Figure S1C,D). Notably,
the device exhibited higher sensitivity at a force of 1 N.
Considering the variation in writing pressure among dif-
ferent individuals, the device's ability to capture

FIGURE 2 Working principle and fundamental characterization of the triboelectric sensor.(A) Working principle of the triboelectric

sensor. (B) The open-circuit voltage at various frequencies. (C) The open-circuit voltage under different driving forces. (D) The open-circuit

voltage under different contacting-separating distances. (E) The open-circuit voltage of the fully packaged triboelectric sensor under different

relative humidity levels. (F) The stability and durability testing of the fully packaged triboelectric sensor.
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handwriting signals was further validated by measuring
its performance under lower normal force. Remarkably,
the device was able to generate a 5V output even under
a normal load of just 0.05 N (Figure S1E). The output
electrical signals under different contact-separation dis-
tances were carried out under a frequency of 2 Hz and a
driving force of 2 N. Figure 2D displays the open-circuit
voltage of the device at different gap distances. It was
found that, as the separation distance increases from 3 to
6 mm, the open-circuit voltage increases from ~150 V to
around 190 V. The short-circuit current and transfer
charges (Q) remain essentially stable (Figure S1F,G); this
may be because the charge reaches saturation at a separa-
tion distance of 3 mm. The contact area between the tri-
boelectric sensor's upper and lower triboelectrification
layers varies with the writing pressure. The output per-
formance of devices with different areas was tested under
a driving force of 2 N and a frequency of 2 Hz. As the
device area decreases, the output performance declines,
but a device with an area of 1 x 1 cm still generates an
output voltage of over 10 V (Figure S2). Figure 2E shows
the electrical performance of the fully packaged triboelec-
tric sensor under different relative humidity levels at a
driving force of 2 N and a frequency of 2 Hz. As we
know, humidity has a detrimental effect on the electrical
output performance of triboelectric sensors due to the
dissipation of triboelectric charges in a high-humidity
environment. However, the packaging approach
employed in this study effectively eliminated the impact
of humidity on the triboelectric sensors. Consequently,
the electrical output performance, including V., I, and
Q, exhibited good stability even as the relative humidity
increased from 40% to 70%. Additionally, the packing
approach offered the added advantage of protecting the
triboelectric sensors from the effects of dust in the operat-
ing environment. It was expected that the electrical out-
put performance of every triboelectric sensor cell in the
array would be consistent so that the differences in writ-
ing behavior could be well captured. The electrical output
performance of the four fully packaged triboelectric sen-
sors under a condition of a driving force of 2 N and a fre-
quency of 2 Hz (Figure S3). It was evident that there
were minor variations in Vi, I, and Q among the four
triboelectric sensors, indicating good overall consistency.
However, it should be noted that there were some perfor-
mances between packaged and unpackaged triboelectric
sensors. This disparity could be attributed to the presence
of a prestressing force that occurred during the encapsu-
lation process using Kapton film. The durability of the
device was crucial for practical application, and the dura-
bility of the triboelectric sensor was evaluated, as shown
in Figure 2F. The results demonstrated that the triboelec-
tric sensor maintained a stable electrical performance

even after 25 000 continuous cycles under a driving force
of 2N and a frequency of 2 Hz. This indicated that the
developed self-powered handwriting recording device
consisting of a triboelectric sensor array was adapting to
varying humidity levels in a practical application envi-
ronment and could operate over an extended period.

2.3 | Handwriting images and signals

Traced and imitated handwriting signatures were com-
monly used in signature theft and could be challenging
to identify accurately. Traditionally, characters were
recorded on paper; only the static features of the hand-
writing signature were stored as grayscale or binary
images while disregarding the dynamic writing informa-
tion. Given that English, Chinese, and numerical charac-
ters were extensively used worldwide, their identification
and verification were crucial for information security. In
this study, Mr. Liu is the genuine writer, while Miss Ma,
Mr. Sun, Mr. Wang, and Miss Wang played the role of
the forgers. Tracing is another common method of hand-
writing forgery. The handwriting images and signals were
obtained by writing on the commercial writing papers
fixed on the designed device. The process of obtaining
handwriting from the genuine writer and the traced
handwriting from forgers was shown in Movie SI.
Figure 3 shows the representative handwriting images
and signals of the genuine writer and the representative
traced handwriting images and signals of the four forgers.
The voltage measurements of the fully packaged hand-
writing signal acquisition device, consisting of four tribo-
electric sensors, were carried out using a multichannel
oscilloscope. The commercial writing paper was placed
on the device during actual testing, and people wrote
characters on the commercial writing paper. The oscillo-
scope's four testing channels record the output voltage
from the four triboelectric sensors and the written image
was recorded on the writing paper simultaneously. The
schematic diagram of the process for collecting handwrit-
ing signals using a triboelectric sensor array is shown in
Figure 3A. The handwriting signals of the English char-
acter “Nature”, Chinese character “H #X”, and numerical
character “2022.03.24” by Mr. Liu (the genuine writer)
are shown in Figure 3B-D, with the corresponding hand-
written image information inserted in these figures.
Figure 3E-G displays Miss Ma's representative traced
handwriting signals of the English character “Nature”,
Chinese character “H#%X”, and numerical character
€2022.03.24”, and with the corresponding traced hand-
written images inserted in these figures. The representa-
tive traced handwriting signals of the English character
“Nature”, Chinese character “H#%X”, and numerical
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character 2022.03.24” by Mr. Sun are shown in
Figure 3H-J, with the corresponding traced handwritten
image information inserted in these figures. Similarly,
Figure 3K-M exhibit Mr. Wang's representative traced
handwriting signals of the English character “Nature”,
Chinese character “H#A”, and numerical character
2022.03.24”, and with the corresponding traced hand-
written images inserted in these figures. Figure 3N-P pre-
sents Miss Wang's representative traced handwriting
signals of the English character “Nature”, the Chinese
character “H#%X”, and the numerical character
2022.03.24”, and with the corresponding traced hand-
written images inserted in these figures. The four forgers
had no prior practice or received professional training,
and the forgers' traced handwriting images and signals
were obtained by tracing Mr. Liu's handwriting image
line-to-line. The forgers' traced handwriting image is
nearly identical to that of the genuine writer, as shown in
the inserted images in Figure 3. Therefore, it is extremely
challenging to conduct handwriting identification and
verification based on the handwriting image. The hand-
writing signals were the time-series data and correlated
to a variety of writing dynamic information, including
the manner and rhythm of the writers' habits, velocity,
and applied writing force. Significant differences were
observed in the handwriting signals between Mr. Liu and
the four forgers when they wrote the same character, as
demonstrated in Figure 3. Therefore, it is easy to distin-
guish forged handwriting from genuine handwriting
based on the handwriting signals. Imitating is another
common method for stealing signatures, where the hand-
writing of the genuine writer and the imitator both
exhibit similar characteristics. The process of obtaining
handwriting from the genuine writer and the forgers imi-
tating the handwriting of the genuine writer was shown
in Movie S2. The representative imitated handwriting sig-
nals of the English character “Nature”, Chinese character
“H#X”, and numerical character “2022.03.24” by the gen-
uine writer and the four forgers were shown in Figure S4,
with the corresponding traced handwritten images infor-
mation inserted in these figures. Compared with traced
handwriting, we observed differences between the imi-
tated handwriting images of forgers and those of the gen-
uine writer. The handwriting signals exhibit distinct
variations. Similarly, while recognizing handwriting
images  poses certain  difficulties, identifying

handwriting signals is much more straightforward.
Figures S5 and S6 present representative samples of
traced handwriting images and signals for all other char-
acters utilized in this study. Figures S7-S15 show all the
handwriting images of the genuine writer and the forgers'
traced handwriting images. Figures S16 and S17 present
representative samples of imitated handwriting images
and signals for all other characters utilized in this study.
Figures S18-S26 show all the handwriting images of the
genuine writer and the forgers' imitated handwriting
images.

2.4 | HWIS and recognition results

Here, a new machine learning architecture was devel-
oped to process the handwriting images and digital sig-
nals to identify the specific handwriting of the genuine
writer. Obtaining abundant handwriting data from a gen-
uine writer for model training was relatively easy, while
acquiring handwriting data from forgers was challenging.
To address this, we conceived the idea of effectively ana-
lyzing the intrinsic characteristics and extracting impor-
tant features from the genuine writer's handwriting data.
By designing an intelligent one-class classifier that learns
the inherent pattern properties of genuine handwriting,
we can accurately identify the genuine writer's handwrit-
ing and differentiate it from forgeries. This approach
offers a suitable solution to the problem of handwriting
identification. Consequently, an advanced deep learning
architecture possessing powerful feature extraction capa-
bilities and a one-class classification function was built.
The architecture combines a mobile neural network,
named MobileNetV2*® with one-class support vector
machine (OC-SVM) classifiers.*” MobileNetV2 was uti-
lized to extract exclusive handwriting habit features of
the genuine writer, while OC-SVM learned the unique
projection relation embedded in the genuine writer's
handwriting feature data. Since handwriting images and
digital signals have different data formats, MobileNetV2
was designed to adapt to the corresponding format. For
two-dimensional handwriting images, the convolutional
calculations of MobileNetV2 were performed in two
orthogonal directions,*”® while for one-dimensional sig-
nals, the convolutional calculations of MobileNetV2 were
done in only one direction.”” The difference led to the

FIGURE 3

Handwriting signals of English character “Nature”, Chinese character “H#X”, and numerical character “2022.03.24”.

(A) Schematic diagram of the process for collecting handwriting signals using a triboelectric sensor array. (B-D) Representative handwriting

images and handwriting signals of Mr. Liu (genuine writer). (E-G) Miss Ma's representative traced handwriting images and handwriting

signals. (H-J) Mr. Sun's representative traced handwriting images and handwriting signals. (K-M) Mr. Wang's representative traced

handwriting images and handwriting signals. (N-P) Miss Wang's representative traced handwriting images and handwriting signals.
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creation of two distinct MobileNetV2 models, which con-
vert the handwriting images and digital signals into the
same one-dimensional feature vectors as the inputs of
OC-SVM, respectively. Thus, the disparity between the
two handwriting recognition model architectures lies in
the feature extraction process.

Figure 4 shows the proposed HWISs and the handwriting
recognition results. The overall structure of the handwriting
image identification system is depicted in Figure 4A. The
handwriting image recognition workflow includes obtaining
the handwriting images, preprocessing raw handwriting
images, feature extraction, training and testing the machine
learning model, and ultimately classifying and identifying
handwriting images. Raw images were commonly affected
by random noise and disturbances, so initial denoising and
normalization were conducted to meet the basic input
requirements of the two-dimensional MobileNetV2 (2D-
MobileNetV2). Subsequently, the standardized images were
input and processed through a pre-trained 2D-MobileNetV2
model. As shown in Figure 4B, the standardized images
transform using a series of network layers, and the last layer
of 2D-MobileNetV2 produces corresponding one-
dimensional feature vectors, the number of which was the
same as the number of the images. An OC-SVM classifier
with default parameters was then employed to train these
feature vectors, enabling the learning of the intrinsic correla-
tion between these vectors and the genuine writer. Once the
OC-SVM classifier had been appropriately trained, it was uti-
lized to classify the handwriting feature vectors derived from
both the genuine writer and forgers. To ensure the model's
excellent performance in handwriting recognition, as many
diverse characters as possible were used during model train-
ing. For instance, in recognizing Arabic numerals, the train-
ing samples selected as 2022.03.24”, “2015.06.08”, and
2017.09.09”, which cover digits from 0 to 9. Figure 4C shows
the handwriting image recognition results of the genuine
writer and the traced handwriting image recognition results
of the four forgers. The identification accuracies for the genu-
ine writer's handwriting images of English, Chinese, and
numerical characters were all over 94%, respectively. How-
ever, the identification accuracies of the four forgers' traced
handwriting images of English characters, Chinese charac-
ters, and numerical characters ranged from 4% to 78%, and
the vast majority of them were under an accuracy of 40%.
This is because, upon careful examination of the

handwriting images, it becomes apparent that the traced
handwriting images of forgers closely resemble the genuine
handwriting of the actual writer. Compared with the traced
handwriting images, there are some differences between the
imitated handwriting and the genuine handwriting of the
genuine writer. Similarly, utilizing the proposed handwriting
image identification system for identifying, the recognition
accuracies were not ideal, as shown in Figure S27A. There-
fore, traditional image-based handwriting recognition
methods were unable to effectively differentiate between the
genuine handwriting of the genuine writer and the traced
handwriting created by the forgers.

Figure 4D depicts the overall structure of the HWIS
based on the handwriting signals acquired by the pro-
posed triboelectric sensors array-enabled self-powered
device. Similarly, the entire process involves handwriting
signal acquisition, preprocessing the raw signals,
extracting features, model training, testing, and identify-
ing the handwriting signals. Raw handwriting signals
typically consist of time-series data, so the initial step was
to segment and rearrange the time-series handwriting
signals to meet the input requirements of the one-
dimensional MobileNetV2 (1D-MobileNetV2). Afterward,
the standardized handwriting signals were input and
processed through a pre-trained 1D-MobileNetV2 model.
The details of the feature extraction processes are shown
in Figure 4E. Subsequently, an OC-SVM classifier with
default parameters was employed to train these feature
vectors, allowing the learning of the intrinsic correlation
between these vectors and the genuine writer. Once the
OC-SVM classifier had been appropriately trained, it was
employed to classify the handwriting feature vectors
derived from both the genuine writer and forgers.
Figure 4F shows the handwriting signal recognition
results of the genuine writer and the traced handwriting
signal recognition results of the four forgers. The hand-
writing identification accuracies of the genuine writer's
English, Chinese, and numerical characters based on
handwriting signals were all over 94%. The handwriting
identification  accuracies of the four forgers'
handwriting signals of English, Chinese, and numerical
characters by using handwriting signals by tracing the
genuine writer's handwriting image ranged from 76% to
100%, with the majority exceeding 94%, as depicted in
Figure 4E. Similarly, using our designed handwriting

FIGURE 4

HWIS and handwriting recognition results. (A) Overall structure of the handwriting image identification system.

(B) Schematic diagram of the overall structure of the detailed 2D-MobileNetV2 model. (C) Identification accuracies of the genuine writer's

handwriting images and forgers' imitated handwriting images of English, Chinese, and numerical characters. (D) Overall structure of the
HWIS based on the handwriting signals. (E) Schematic diagram of the overall structure of the detailed 1D-MobileNetV2 model.
(F) Identification accuracies of the genuine writer's handwriting and forgers' imitated handwriting of English, Chinese, and numerical

characters based on the handwriting signals.
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FIGURE 5 Demonstration of handwriting signals acquisition, wireless transmission, uploaded to a data cloud, and displayed on multi-
terminals. (A) Flow chart of the system, including handwriting analog signals acquisition, processing/wireless transmission, artificial
intelligence, and identification. (B) Photograph of the handwriting signals acquisition and wireless transmission system that consisted of a
triboelectric sensors array. (C) Handwriting signals data uploaded to a data cloud. (D) Handwriting signals data wirelessly transmitted to

multi-terminals and displayed.

recognition system based on handwriting signals to iden-
tify genuine writer's handwriting and forgers' imitated
handwriting, the recognition accuracies were also quite
high, as shown in Figure S27B. The designed triboelectric
sensors array based self-powered device captured rich
dynamic information during the process of forgers trac-
ing the genuine writer's handwriting images to obtain
traced handwriting. This suggested that the difference
between the forgers' handwriting signals and the genuine
writer's handwriting signals was much more pronounced
than the difference between the forgers' traced/imitated
handwriting images and the genuine writer's handwriting
images. The recognition accuracies of
handwriting signals were consistently higher than those
of handwriting images, whether imitated or traced

handwriting of forgers. These findings indicated that the
proposed HWIS, which incorporates the self-powered
handwriting digital signal acquisition device based on tri-
boelectric sensors and machine learning methods, holds
the potential to solve the major challenge of handwriting
identification and verification.

2.5 | Handwriting signal acquisition and
wireless transmission system

For handwriting information, traditional methods
involve recording the writer's strokes on paper and stor-
ing them physically, and in some cases, the handwritten
images are scanned to create electronic versions for
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digital storage. Figure 5A illustrates the proposed hand-
writing signal acquisition, wireless transmission, and rec-
ognition system flow chart. The handwriting signal
recording device was based on a triboelectric sensor array
to record handwriting information. Specifically, the
device captures static image information of the handwrit-
ing on paper placed on the device, akin to the traditional
method of recording and preserving handwritten infor-
mation. More crucially, the system proposed in this study
collected a wealth of dynamic handwriting information
reflecting the writer's writing speed, pressure, and
rhythm. Simultaneously, it displayed the dynamic hand-
writing signals during the writing process on multi-
terminal devices, and access to detailed handwriting
information was facilitated. Additionally, we have
designed and implemented the capability to upload
dynamic handwriting signal data to the data cloud, stor-
ing the handwriting information in a data cloud. This sig-
nificantly enhanced data accessibility and security,
making it convenient for users to back up and restore. In
scenarios where handwriting recognition is needed, the
proposed method of storing handwriting signal data in a
data cloud allows users to download historical handwrit-
ing data from anywhere. By utilizing the well-trained
artificial intelligence model, highly accurate recognition
of the handwriting can be achieved. Figure 5B shows the
photograph of the handwriting acquisition and wireless
transmission systems that consisted of a triboelectric sen-
sor array, a high-precision multichannel ADC chip, and a
main MCU with wireless communication function. Bene-
fits from this integrated design, the collection and wire-
less transmission of handwriting signals data have been
achieved. When a person wrote characters on the paper
placed on the device, the handwriting signal data was
collected and uploaded to the data cloud, as shown in
Figure 5C. The process of writing characters on the self-
powered device, collecting handwriting signal data, wire-
less transmission, and uploading to a data cloud was
shown in Movie S3. Based on the open-source phyphox
software, we conducted secondary development to create
our app. When a person writes on the paper that is placed
on the developed device, thanks to the developed wireless
transmission module, the handwriting signal data is wire-
lessly transmitted and displayed on the app installed on a
smartphone or Pad. Additionally, remote access to the
handwriting signal data can also be achieved on a com-
puter through a web interface, as shown in Figure 5D.
The process of writing characters on the
self-powered device, collecting handwriting signal data,
wireless transmission, and displaying them on multi-
terminals was shown in Movie S4. This demonstration
presents significant potential applications of the devel-
oped system in addressing the long-standing challenge of
distinguishing between the genuine writer's signature

and the forgers' traced/imitated signature. Simulta-
neously, it enhances the security level of personal signa-
tures and ensures the protection of private information.

3 | CONCLUSION

In summary, we developed a handwriting information
data acquisition, wireless transmission, and identification
system that consisted of the fully packaged triboelectric
sensor array and machine learning methods. Thanks to
the fully packaged method, these sensors demonstrated
excellent resistance to humidity and dust. The developed
system can capture both handwriting images and hand-
writing signal data. A mobile neural network called
MobileNetV2 combined with a one-class support vector
machine (OC-SVM) classifier was constructed for recog-
nizing and identifying handwriting. We found that four
forgers' traced handwriting images show virtually no dif-
ferences compared with the genuine writer's
handwriting image and the low recognition accuracies of
handwriting images provide strong evidence. However,
the developed system can capture rich dynamic hand-
writing information during the writing process, and the
handwriting signal data of the genuine writer and forgers
exhibit significant differences. The high recognition accu-
racies of handwriting signal data strongly demonstrated
this conclusion. In a word, the recognition accuracies of
handwriting signals were consistently higher than those
of handwriting images, whether imitated or traced hand-
writing of forgers. We also showcased the physical imple-
mentation of the developed system, demonstrating its
capabilities in handwriting signal data acquisition, wire-
less transmission, data uploading to the data cloud, and
allocation on multiple display terminals. Additionally, we
exhibited the system's capability for remote access and
downloading the handwriting signal data through the
data cloud, highlighting its practical value for fulfilling
the requirements of handwriting recognition and identifi-
cation applications. These findings indicated that the pro-
posed HWIS holds significant potential to solve the major
longstanding challenge of handwriting identification and
verification that has perplexed humans for a considerable
time. It can enhance the security level of personal signa-
tures and ensure the protection of private information.

4 | EXPERIMENTAL SECTION

4.1 | Fabrication of triboelectric sensors

Fabrication of triboelectric sensors involves three main
steps: triboelectric sensor fabrication, packaging, and
assembly. For triboelectric sensor fabrication, FEP film
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and Cooper film were used as the triboelectrification
layer materials, copper as the electrode, PMMA as the
support structure material, and EVA foam as a buffer
layer to increase the contact area. In the case of the self-
powered handwriting signal acquisition array device,
which consisted of four triboelectric sensors, we cut the
125-pm thick FEP film into a 35 x 35 mm size and
cleaned it sequentially in deionized water, alcohol,
and deionized water baths using ultrasonic waves. A
layer of conductive copper tape as the top electrode was
attached to one surface of the FEP film. A piece of EVA
foam with a size of 35 x 35 x 3 mm was then attached to
the top electrode, followed by attaching a
35 x 35 x 1 mm PMMA piece to the EVA foam. The
FEP-EVA-PMMA sandwich structure was attached to a
50 x 50 x 1 mm PMMA piece using a double-faced
adhesive tape, with the PMMA faces facing each other,
thus completing the upper part of a TENG. For the lower
part of the triboelectric sensor, a layer of conductive cop-
per tape was attached to the top surface of a
35 x 35 x 3mm EVA foam piece. The EVA foam was
then attached to the surface of a 35 x 35 x 1 mm PMMA
piece. The EVA foam with a copper layer was attached to
a 50 x 50 x 1 mm PMMA piece using double-faced
adhesive tape, with the EVA foam facing the PMMA,
completing the lower part of the triboelectric sensor.
Finally, the upper and lower parts were assembled by fix-
ing four springs at each angle of a 50 x 50 x 1 mm
PMMA piece, resulting in the fabrication of a complete
triboelectric sensor. Following triboelectric sensor fabri-
cation, we proceeded with the packing processes. In this
work, a layer of Kapton film was used to package the tri-
boelectric sensor to eliminate the effect of environmental
humidity and dust on the electrical output performance
of the device. Ultimately, four fully packaged triboelectric
sensors were fabricated using the above process and
attached to a piece of PMMA with a size of
120 x 120 x 1.5 mm, which served as the top panel. A
writing pad with a size of 148 x 210 x 2 mm was then
attached to the underside of the four triboelectric sensors,
creating a self-powered handwriting signal recording
device.

4.2 | Characterization and
measurements

For characterizing the electrical output performance of
the contact-separation mode triboelectric sensor, a linear
motor was used to drive the sensor contact and separate
periodically. A high-voltage source meter was used to
electrify the FEP. To ensure consistent experimental con-
ditions, a force sensor (HYchuangan, HYMH-019) was

utilized to measure the force in real-time. A humidity
meter (DRETEC, 0-230) was employed to measure the
humidity of the experimental condition. A programmable
electrometer (Keithley, 6517B) was used to measure the
open-circuit voltage, short-circuit current, and transfer
charges. The voltage measurements of the fully packaged
handwriting signal acquisition device that consisted of
four triboelectric sensors were carried out using a
multichannel oscilloscope (Tektronix, TBS2104B) with
the normal probe 10 MQ.

4.3 | Handwriting dataset collection
Regarding the handwriting dataset, we aimed to demon-
strate the generality and excellence of the proposed
HWIS in identifying various character types commonly
encountered in our daily work and life, including Chi-
nese, English, and numerical characters. The Chinese
phrases “HR”, “FFRl”, “Z#”, their corresponding
English translations, “Nature”, “Science”, and “Hand-
writing”, as well as three numerical combinations,
“2015.06.08”, “2017.09.09”, and ‘2022.03.24”, were
selected as textual samples for our research. To collect
the handwriting images and digital signals from both the
genuine writer and forgers, we recruited five undergradu-
ate students as volunteers. Mr. Liu, as the genuine writer,
wrote the selected characters on the commercially avail-
able paper fixed on the self-powered handwriting digital
signal acquisition device, repeating this process 50 times
for each character. We recorded his handwriting images
on paper while capturing the handwriting digital signals
using the device. The four forgers, using both imitating
and tracing methods, wrote the selected characters on
the commercially available paper fixed to the device.
Again, the process was repeated 50 times for each
selected character. As a result, we simultaneously
obtained 50 imitated and traced handwriting images and
digital signals.

44 | Demonstration of the system
application

For the real-time demonstration of the system, the tribo-
electric sensors array connects to a four-channel high-
precision ADC, ensuring that each triboelectric sensor is
connected to the appropriate channel to capture its ana-
log signal. Connect the pins of the four-channel high-
precision ADC to the corresponding pins of an ESP32
microcontroller to receive the signal output from the
ADC. A filtering algorithm is programmed on the ESP32
microcontroller to filter the signal collected from the

85U801 SUOWILOD 8A11ER1D) 8|qeot [dde auy Aq peuob 8k S9pie YO ‘8sh JO S9N 10} ARIqIT8UIIUO AB]IM UO (SUOTHPUOD-PUB-SWS 00" A8 WA e.q 18U [U0//SdNy) SUORIPUOD pue SWis | 8y 8es *[520z/90/c2] Uo AriqiTauliuo A(1m 1O uonmisu| Builleg-sed Aq Z000Z Z4U1/200T OT/10p/wioo" A3 1M AReq 1 pul|uoy/sdny woij papeojumod ‘0 ‘G9TEL95Z



ZHANG ET AL.

Wl LEY 15 of 16

ADC. A program was written to transmit handwriting
signal data, using Bluetooth wireless transmission proto-
col to a specified receiver. At the receiving terminal, per-
form secondary development of the open-source phyphox
software to receive data from the ESP32 microcontroller
and achieve real-time display. The ESP32 establishes
internet communication via WiFi, connecting to the
server using the WebSocket protocol. It sends four sets of
data to the server in the form of a JSON array for
processing. The processed data is then displayed using a
web page written with Vuejs and Chart.js, allowing for
the simultaneous visualization of data from four
channels.
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